Définitions
Une matrice à m lignes et n colonnes est un tableau rectangulaire de mn nombres, rangés ligne par ligne. Il y a m lignes, et dans chaque ligne n nombres.
Passons maintenant à la définition formelle. Soient A un ensemble et (m,n) un couple d'entiers positifs. Le plus souvent, l'ensemble A est muni d'une structure de corps commutatif mais on utilise aussi fréquemment des matrices à coefficients dans un anneau.
On appelle matrice à coefficients dans A, de dimension (ou taille) (m,n) (c'est-à-dire à m lignes et n colonnes), une famille (ai,j) d'éléments de A indexée par le produit cartésien des ensembles de nombres entiers [1,m] et [1,n].
La matrice M pourra être notée par
ou plus simplement (ai,j) si le contexte s'y prête.
On représente généralement une matrice sous la forme d'un tableau rectangulaire. Par exemple, est représentée ci-dessous une matrice M, à coefficients entiers, et de dimension (3,4) :
Dans cette représentation, le premier coefficient de la dimension est le nombre de lignes, et le deuxième, le nombre de colonnes du tableau. Une matrice pour laquelle le nombre m de lignes est égal au nombre n de colonnes sera dite matrice carrée de taille n. Une matrice ne comportant qu'une seule ligne et n colonnes est appelée matrice ligne de taille n. Une matrice ne comportant m lignes et une seule colonne est appelée matrice colonne de taille m.
Pour repérer un coefficient d'une matrice, on indique son indice de ligne puis son indice de colonne, les lignes se comptant du haut vers le bas et les colonnes de la gauche vers la droite. Par exemple, on notera ai,j, les coefficients de la matrice M, pour
désignant le numéro de la ligne sur laquelle figure le coefficient envisagé, et
désignant son numéro de colonne ; ainsi a2,4=7.
La disposition générale des coefficients d'une matrice M de taille (m,n) est donc la suivante
Pour effectuer certaines opérations, il peut être utile de travailler sur le système des lignes ou des colonnes d'une matrice. On pourra alors l'écrire sous une des formes suivantes
ou
.
L'ensemble des matrices à coefficients dans A possédant m lignes et n colonnes est noté Mm,n(A) (ou parfois M(m,n,A)).
Lorsque m=n on note plus simplement Mn(A).
Soit
, on appelle transposée de M la matrice
. Remarquons que
.
Par exemple, avec la matrice M des exemples précédents, on a
L'opération de transposition est involutive, c'est-à-dire que
.
Espaces de matrices
On suppose maintenant que A est muni d'une structure d'anneau unitaire ; les éléments de A seront appelés scalaires, par opposition aux matrices dont nous allons voir qu'elles peuvent être considérées comme des vecteurs.
Addition et multiplication par un scalaire [modifier]
On définit sur Mm,n(A) une loi de composition interne provenant de l'addition des scalaires :
- (ai,j) + (bi,j) = (ci,j) ou
On ne peut additionner que deux matrices de même taille.
Pour chaque valeur du couple (m,n), l'espace Mm,n(A) devient alors un groupe abélien, d'élément neutre la matrice nulle, celle dont tous les coefficients valent 0.
On définit aussi une opération à gauche de A sur chaque espace Mm,n(A)en associant à chaque matrice (ai,j) à coefficients dans A et chaque scalaire λ dans A, la matrice λ(ai,j) = (λai,j) obtenue en effectuant la multiplication, dans A, de tous les coefficients de la matrice initiale par λ : c'est la multiplication par un scalaire.
En reprenant toujours la matrice M du premier exemple :
Les espaces Mm,n(A) ainsi obtenus ont donc une structure de A-module à gauche, et plus particulièrement de A-espace vectoriel, si A est un corps commutatif.
Base canonique de l'espace des matrices
Alors Mm,n(A) est un A-module libre de dimension mn, muni d'une base canonique
. La matrice Ei,j est celle dont tous les coefficients sont nuls sauf celui d'indice (i,j), qui vaut 1.
Pour toute matrice M, les coordonnées dans la base canonique sont les coefficients

Produit matriciel
On commence par définir le produit d'une matrice ligne par une matrice colonne. Soit n un nombre entier, L une matrice ligne, xi ses coefficients, C une matrice colonne, yi ses coefficients. On les suppose toutes deux de taille n. On définit alors le produit, considéré comme un scalaire ou une matrice de dimension (1,1) :
On remarque la condition de compatibilité sur les tailles des matrices (égalité du nombre de colonnes de la première avec le nombre de lignes de la deuxième). On définit maintenant plus généralement un produit entre deux matrices, la première, (xi,j) dans Mm,n(A), la deuxième, (yi,j) dans Mn,p(A), toujours avec une condition de compatibilité sur les tailles (et l'ordre des facteurs de la multiplication ne peut en général pas être changé). Le résultat obtenu est une matrice de Mm,p(A), dont les coefficients (zi,j) sont obtenus par :

À la lumière de l'exemple de la multiplication d'une matrice ligne par une matrice colonne, on peut reformuler cette définition en disant que ce coefficient est égal au produit de la ligne i de la première matrice par la colonne j de la deuxième, ce qui s'écrit de la manière suivante, si les Li sont les lignes de la première matrice, et les Cj les colonnes de la deuxième, le produit est :
.
Pour calculer en pratique un produit, il est nécessaire de visualiser l'opération. On considère le coefficient c1,2 de la matrice produit MN si M est une matrice de type (4, 2), et N est une matrice de type (2, 3).
Le produit matriciel est associatif, distributif à droite et à gauche par rapport à l'addition matricielle. En revanche, même si les dimensions permettent de donner un sens à la question, même si l'anneau des scalaires est commutatif, un produit de matrices ne commute en général pas : MN n'est pas égal à NM, par exemple :
Remarque : le produit de deux matrices non nulles est peut être nul, comme l'exemple au-dessus.
Ce contre-exemple prouve même que les matrices MN et NM ne sont pas toujours semblables.
Lorsque l'anneau des scalaires est commutatif, la transposition et le produit matriciel vérifient la propriété :
Matrice identité et inverse d'une matrice
Pour chque nombre entier n, on note In la matrice carrée de taille n dont les coefficients diagonaux sont égaux à 1 et dont les autres coefficients sont nuls ; elle est appelée matrice identité de taille n.
![I_1=1quad
I_2= begin{pmatrix} 1 & 0 0 & 1end{pmatrix}
quad
I_3=begin{pmatrix} 1 & 0 & 0 0 & 1 & 0]()